Role of the gerP Operon in Germination and Outgrowth of Bacillus anthracis Spores

نویسندگان

  • Katherine A. Carr
  • Brian K. Janes
  • Philip C. Hanna
چکیده

Germination of Bacillus anthracis spores occurs when nutrients such as amino acids or purine nucleosides stimulate specific germinant receptors located in the spore inner membrane. The gerP(ABCDEF) operon has been suggested to play a role in facilitating the interaction between germinants and their receptors in spores of Bacillus subtilis and Bacillus cereus. B. anthracis mutants containing deletions in each of the six genes belonging to the orthologue of the gerP(ABCDEF) operon, or deletion of the entire operon, were tested for their ability to germinate. Deletion of the entire gerP operon resulted in a significant delay in germination in response to nutrient germinants. These spores eventually germinated to levels equivalent to wild-type, suggesting that an additional entry point for nutrient germinants may exist. Deletions of each individual gene resulted in a similar phenotype, with the exception of DeltagerPF, which showed no obvious defect. The removal of two additional gerPF-like orthologues was necessary to achieve the germination defect observed for the other mutants. Upon physical removal of the spore coat, the mutant lacking the full gerP operon no longer exhibited a germination defect, suggesting that the GerP proteins play a role in spore coat permeability. Additionally, each of the gerP mutants exhibited a severe defect in calcium-dipicolinic acid (Ca-DPA)-dependent germination, suggesting a role for the GerP proteins in this process. Collectively, these data implicate all GerP proteins in the early stages of spore germination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dltABCD operon of Bacillus anthracis sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity.

In the environment, the gram-positive bacterium Bacillus anthracis persists as a metabolically dormant endospore. Upon inoculation into the host the endospores germinate and outgrow into vegetative bacilli able to cause disease. The dramatic morphogenic changes to the bacterium during germination and outgrowth are numerous and include major rearrangement of and modifications to the bacterial su...

متن کامل

Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis.

As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores' dipicolinic acid (DPA), but times for release of >90% of ...

متن کامل

Macrophage-mediated germination of Bacillus anthracis endospores requires the gerH operon.

The gerHABC operon of Bacillus anthracis, encoding a gerA-like family member of germinant sensors, was shown to be required for endospore germination in the presence of macrophages and in macrophage-conditioned media. The loss of the germination phenotype in macrophage cultures of B. anthracis gerH-null endospores was restored by complementation in trans with a wild-type copy of gerH expressed ...

متن کامل

Role of germinant receptors in Caco-2 cell-initiated germination of Bacillus cereus ATCC 14579 endospores.

Spores obtained from Bacillus cereus ATCC 14579 and mutant strains lacking each of seven germinant receptor operons were exposed to differentiated Caco-2 cells and monitored for germination. Spores of the gerI and gerL mutants showed a reduced germination response, pointing to a role for these receptors in Caco-2-induced germination.

متن کامل

Inhibition of Bacillus anthracis spore outgrowth by nisin.

The lantibiotic nisin has previously been reported to inhibit the outgrowth of spores from several Bacillus species. However, the mode of action of nisin responsible for outgrowth inhibition is poorly understood. By using B. anthracis Sterne 7702 as a model, nisin acted against spores with a 50% inhibitory concentration (IC(50)) and an IC(90) of 0.57 microM and 0.90 microM, respectively. Viable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010